期刊
首页> 《中国测试》期刊 >本期导读>基于微区拉曼法的AlGaN/GaN HEMT沟道温度测试研究
基于微区拉曼法的AlGaN/GaN HEMT沟道温度测试研究

421 2024-03-22

¥0.50全文售价

作者:王瑞泽1, 郭怀新1, 付志伟2, 尹志军1, 李忠辉1, 陈堂胜1

作者单位:1. 微波毫米波单片集成和模块电路重点实验室,江苏 南京 210000;
2. 电子元器件可靠性物理及其应用技术重点实验室,广东 广州 510000


关键词:微区拉曼法;AlGaN/GaN HEMT;沟道温度;红外热成像法


摘要:

针对现有温度测试技术难以满足GaN器件寿命、可靠性以及热管理控制对沟道温度精确评估的需求,开展基于微区拉曼法测定AlGaN/GaN高电子迁移率晶体管(HEMT)的沟道温度的研究。使用拉曼系统测量GaN材料的E2声子频率特征峰来确定沟道温度。通过使用洛伦兹拟合方法,提高拉曼测试结果精度。对微区拉曼法和红外热成像法测量器件结温进行量化研究,器件的直流输出功率密度分别为6、8、10 W/mm时基于微区拉曼法测得的GaN器件沟道温度分布为140.7、176.7、213.6 ℃;基于红外热成像法测得的温度分布为132.0、160.2、189.8 ℃。其测试精度相对红外法分别提升6.6%,10.3%和12.5%,同时尝试探索沟道深度方向的温度测量,实现沟道下3 μm的温度测量,结果表明微区拉曼法有更高的测试精度,对器件结温的测量与评估以及热管理技术的提升都有重要意义。


Research on measurement of channel temperature of AlGaN/GaN HEMT based on micro Raman method
WANG Ruize1, GUO Huaixin1, FU Zhiwei2, YIN Zhijun1, LI Zhonghui1, CHEN Tangsheng1
1. Science and Technology on Monolithic Integrated Circuits and Modules Laboratory, Nanjing 210000, China;
2. Key Laboratory of Reliability Physics of Electronic Components and Its Application Technology, Guangzhou 510000, China
Abstract: In view of the fact that the existing temperature testing technology is difficult to meet the needs of GaN device lifetime, reliability and thermal management control accurate evaluation of the channel temperature, research on measurement of the channel temperature of AlGaN/GaN high electron mobility transistor (HEMT) based on micro Raman method was carried out. The channel temperature was determined by measuring the E2 phonon frequency characteristic peak of the GaN material using a Raman system. Improve the precision of Raman testing results by using the Lorentzian fitting method. The junction temperature of the device measured by the micro Raman method and infrared thermal imaging method was quantitatively studied. When the DC output power density of the device was 6, 8, and 10 W/mm, the channel of the GaN device was measured based on the micro-Raman method, the temperature distributions were 140.7,176.7 and 213.6°C; respectively, the temperature distributions measured based on infrared thermal imaging were 132.0,160.2 and 189.8°C. Compared with the infrared method, the testing precision has been improved by 6.6%, 10.3% and 12.5%. At the same time, the temperature measurement in the depth direction of the channel has been explored, and the temperature measurement of 3 μm under the channel has been achieved. The results show that the micro Raman method has higher testing precision, it is of great significance to the measurement and evaluation of device junction temperature and the improvement of thermal management technology.
Keywords: micro Raman method;AlGaN/GaN HEMT;channel temperature;infrared thermal imaging
2024, 50(3):13-18,44  收稿日期: 2022-04-01;收到修改稿日期: 2022-05-27
基金项目: 国防科技重点实验室基金(61428060205)
作者简介: 王瑞泽(1995-),男,湖南永兴县人,助理工程师,硕士,主要从事微电子热管理的研究工作。
参考文献
[1] LIU C, CHOR E F, TAN L S. Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-k dielectric for surface passivation and gate oxide[J]. Semiconductor Science and Technology, 2007, 22(5): 522-527
[2] CHEN W, ZHOU C, CHEN K J. High-current-density high-voltage normally-off AlGaN/GaN hybrid-gate HEMT with low on-resistance[J]. Electronics Letters, 2010, 46(24): 1626-1627
[3] 郭怀新, 黄语恒, 黄宇龙, 等. 大功率器件及材料的热特性表征技术研究进展[J]. 中国材料进展, 2018, 37(12): 1017-1023+1047
GUO H X, HUANG Y H, HUANG Y L,et al. Thermal characteristics table of high-power devices and materials research progress in signal technology[J]. Materials China, 2018, 37(12): 1017-1023+1047
[4] 黄先奎. GaN HEMT瞬态结温光学测试技术及应用[J]. 半导体技术, 2020, 45(11): 817-827
HUANG X K. GaN HEMT transient junction temperature optical testing technology and its application[J]. Semiconductor Technology, 2020, 45(11): 817-827
[5] 翟玉卫, 刘岩, 李灏, 等. 用光热反射热成像测量GaN HEMT稳态温度[J]. 中国测试, 2021, 47(10): 41-45
ZHAI Y W, LIU Y, LI H, et al. Measurement of GaN using photothermal reflection thermal imaging HEMT steady-state temperature[J]. China Measurement& Test, 2021, 47(10): 41-45
[6] 迟雷, 茹志芹, 童亮, 等. GaN HEMT器件热特性的电学测试法[J]. 半导体技术, 2017, 42(3): 235-240
CHI L, RU Z Q, TONG L, et al. Electrical testing of thermal characteristics of GaN HEMT devices law[J]. Semiconductor Technology, 2017, 42(3): 235-240
[7] 李静, 金雷. 光学方法在表征氮化镓、氮化铝材料点缺陷上的应用[J]. 中国测试, 2021, 47(S1): 84-87
LI J, JIN L. Application of optical methods in characterizing point defects in gallium nitride and aluminum nitride materials[J]. China Measurement & Test, 2021, 47(S1): 84-87
[8] 施尚, 林罡, 孙军, 等. GaN HEMT器件稳态热特性试验研究[J]. 固体电子学研究与进展, 2021, 41(1): 69-74
SHI S, LIN G, SUN J, et al. Experimental study on steady state thermal characteristics of GaN HEMT devices research[J]. Research and Progress in Solid State Electronics, 2021, 41(1): 69-74
[9] 翟玉卫, 梁法国, 刘岩, 等. 提高瞬态红外设备检测GaN HEMT结温准确度的方法[J]. 中国测试, 2017, 43(5): 20-25
ZHAI Y W, LIANG F G, LIU Y, et al. Method to improve the accuracy of detecting GaN HEMT junction temperature in transient infrared devices[J]. China Measurement& Test, 2017, 43(5): 20-25
[10] 梁法国, 翟玉卫, 吴爱华. 用显微红外热成像技术分析功率器件可靠性[J]. 微纳电子技术, 2011, 48(5): 338-342
LIANG F G, ZHAI Y W, WU A H. Analyzing the reliability of power devices using micro infrared thermal imaging technology[J]. Micronanoelectronic Technology, 2011, 48(5): 338-342
[11] KUBALL M, HAYES J M, UREN M J, et al. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy[J]. IEEE Electron Device Letters, 2002, 23(1): 7-9
[12] KOSAKA K, FUJISHIMA T, INOUE K, et al. Temperature distribution analysis of AlGaN/GaN HFETs operated around breakdown voltage using micro-Raman spectroscopy and device simulation[J]. Physica Status Solidi. C, Conferences and Critical Reviews, 2007, 4(7): 2744-2747
[13] 王振亚, 杨强, 刘荣军, 等. GaN功率模块加速寿命试验设计[J]. 通讯世界, 2019, 26(7): 346-347
WANG Z Y, YANG Q, LIU R J, et al. Design of accelerated life test for GaN power module[J]. Telecom World, 2019, 26(7): 346-347
[14] SIMMS R, POMEROY J W, UREN M J, et al. Channel temperature determination in high-power AlGaN/GaN HFETs using electrical methods and Raman spectroscopy[J]. IEEE Transactions on Electron Devices, 2008, 55(2): 478-482
[15] 李汝冠, 廖雪阳, 尧彬, 等. GaN基HEMTs器件热测试技术与应用进展[J]. 电子元件与材料, 2017, 36(9): 1-9
LI R G, LIAO X Y, YAO B, et al. Progress in thermal testing technology and application of GaN based HEMTs devices[J]. Electronic Components & Materials, 2017, 36(9): 1-9
[16] KRISHNAN K. The Raman effect in crystals[J]. Nature, 1928, 122(3074): 477-478
[17] 李灏, 郑世棋, 翟玉卫, 等. 脉冲法结温测量中校温曲线随电流变化现象的研究[J]. 半导体技术, 2020, 45(12): 988-992
LI H, ZHENG S Q, ZHAI Y W, et al. Research on the phenomenon of temperature calibration curve changing with current in pulse method junction temperature measurement[J]. Semiconductor Technology, 2020, 45(12): 988-992
[18] LIU M S, BURSILL L A, PRAWER S, et al. Temperature dependence of Raman scattering in single crystal GaN films[J]. Applied Physics Letters, 1999, 74(21): 3125-3127
[19] 高立, 廖之恒, 李世伟, 等. 小尺寸栅极HEMT器件结温测量[J]. 半导体技术, 2017, 42(11): 833-837+843
GAO L, LIAO Z H, LI S W, et al. Measurement of junction temperature in small-sized gate HEMT devices[J]. Semiconductor Technology, 2017, 42(11): 833-837+843
[20] WU Y F, MOORE M, SAXLER A, et al. 40-W/mm double field-plated GaN HEMTs[C]// Device Research Conference. IEEE Xplore, 2006: 151-152.
[21] ZHANG G C, FENG S W, ZHOU Z, et al. Evaluation of thermal resistance constitution for packaged AlGaN/GaN high electron mobility transistors by structure function method[J]. Chinese Physics B, 2011, 20(2): 27202-027202
[22] CUI J B, AMTMANN K, RISTEIN J, et al. Noncontact temperature measurements of diamond by Raman scattering spectroscopy[J]. Journal of Applied Physics, 1998, 83(12): 7929-7933